Abstract
This study aims to introduce Bayesian Knowledge Tracing (BKT), a probabilistic model used in educational data mining to estimate learners’ knowledge states over time. It also provides a practical guide to estimating BKT models using the pyBKT library available in Python. The first section presents an overview of BKT by explaining its theoretical foundations and advantages in modeling individual learning processes. In the second section, we describe different variants of the standard BKT model based on item response theory (IRT). Next, we demonstrate the estimation of BKT with the pyBKT library in Python, outlining data pre-processing steps, parameter estimation, and model evaluation. Different cases of knowledge tracing tasks illustrate how BKT estimates learners’ knowledge states and evaluates prediction accuracy. The results highlight the utility of BKT in capturing learners’ knowledge states dynamically. We also show that the model parameters of BKT resemble the parameters from logistic IRT models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.