Abstract
This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread use of intra-day DERs and new market perspectives. The proposed model was tested with hourly wholesale electricity price data from Colombia, and the results were compared with different state-of-the-art forecasting baseline-tuned models such as Holt–Winters, XGBoost, Stacked LSTM, and Attention-LSTM. The findings show that the proposed model outperforms these baselines by effectively incorporating nonlinearity and explicitly modeling the underlying data’s behavior, all of this under four operating scenarios and different performance metrics. This allows it to handle high-, medium-, and low-variability scenarios while maintaining the accuracy and reliability of its predictions. The proposed framework shows potential for significantly improving the accuracy of electricity price forecasts, which can have significant benefits for making informed decisions in the energy sector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.