Abstract

This paper proposes a new interval uncertainty analysis method for structural response bounds with uncertain‑but-bounded parameters by using feedforward neural network (FNN) differentiation. The information of partial derivative may be unavailable analytically for some complicated engineering problems. To overcome this drawback, the FNNs of real structural responses with respect to structure parameters are first constructed in this work. The first-order and second-order partial derivative formulas of FNN are derived via the backward chain rule of partial differentiation, thus the partial derivatives could be determined directly. Especially, the influences of structures of multilayer FNNs on the accuracy of the first-order and second-order partial derivatives are analyzed. A numerical example shows that an FNN with the appropriate structure parameters is capable of approximating the first-order and second-order partial derivatives of an arbitrary function. Based on the parameter perturbation method using these partial derivatives, the extrema of the FNN can be approximated without requiring much computational time. Moreover, the subinterval method is introduced to obtain more accurate and reliable results of structural response with relatively large interval uncertain parameters. Three specific examples, a cantilever tube, a Belleville spring, and a rigid-flexible coupling dynamic model, are employed to show the effectiveness and feasibility of the proposed interval uncertainty analysis method compared with other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.