Abstract

This paper proposes a new design optimization framework for suspension systems considering the kinematic characteristics, such as the camber angle, caster angle, kingpin inclination angle, and toe angle in the presence of uncertainties. The coordinates of rear inner hardpoints of upper control arm and lower control arm of double wishbone suspension are considered as the design variables, as well as the uncertain parameters. In this way, the actual values of the design variables will vary surrounding their nominal values. The variations result in uncertainties that are described as interval variables with lower and upper bounds. The kinematic model of the suspension is developed in software ADAMS. A high-order response surface model using the zeros of Chebyshev polynomials as sampling points is established, termed as Chebyshev metamodel, to approximate the kinematic model. The Chebyshev meta-model is expected to provide higher approximation accuracy. Interval uncertain optimization problems usually involve a nested computationally expensive double-loop optimization process, in which the inner loop optimization is to calculate the bounds of the interval design functions, while the outer loop is to search the optimum for the deterministic optimization problem. To reduce the computational cost, the interval arithmetic is introduced in the inner loop to improve computational efficiency without compromising numerical accuracy. The numerical results show the effectiveness of the proposed design method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.