Abstract
A novel homogeneous integration strategy of an interval type-2 fuzzy inference system (IT2FIS) with Takagi-Sugeno-Kang reasoning (TSK IT2FIS) is presented. This TSK IT2FIS is represented as an adaptive neural network (NN) with hybrid learning (IT2FNN:BP+RLS) in order to automatically generate an interval type-2 fuzzy logic system (TSK IT2FLS). Consequent parameters are updated with recursive least-square (RLS) algorithm; antecedent parameters with back-propagation (BP) algorithm. Mackey-Glass chaotic time series forecasting results are presented ((=17, 30, 100) with different signal noise ratio (SNR). Soundness for uncertainty, adaptability and learning and generalization capabilities is shown using 10-fold Cross Validation, Akaike Information Criteria (AIC) and F-Test.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have