Abstract

In this paper, interval sequential linear programming (ISLP) is proposed to solve nonlinear robust optimization (RO). The main idea of the programming is to transform the uncertain optimization into several possibility-sensitivity analyses and deterministic linear optimization problems that are sequentially solved. At each cycle, a possibility-sensitivity analysis method is proposed to obtain the approximate partial derivatives of the uncertain constraints at the current design point, based on which a deterministic linear optimization model is constructed and the design point is updated by solving the linear optimization. Moreover, an iterative mechanism is created to adaptively update the design space and improve the convergence rate. Finally, two numerical examples and two practical engineering problems are applied to verify the accuracy and efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call