Abstract

Considering the pivotal role of ferroalloys in the steel industry and the escalating global emphasis on sustainability (e.g., zero emissions and carbon neutrality), the demand for ferroalloys is anticipated to increase. However, the electric arc furnace (EAF) of ferroalloy plants generates substantial amounts of nitrogen oxides (NOx) because of the high-temperature combustion processes. Despite the substantial contributions of many studies on NOx prediction from various industrial facilities, there is a lack of studies considering the environmental condition of the EAF in ferroalloy plants. Therefore, this study presents a deep learning model for predicting NOx emissions from ferroalloy plants and further can provide guidelines for predicting NOx in industrial sites equipped with electric furnaces. In this study, we collected various historical data from the manufacturing execution system of electric furnaces and exhaust gas systems to develop a prediction model. Additionally, an interpretable artificial intelligence method was employed to track the effects of each variable on the NOx emissions. The proposed prediction model can provide decision support to reduce NOx emissions. Furthermore, the interpretation of the model contributes to a better understanding of the factors influencing NOx emissions and the development of effective strategies for emission reduction in ferroalloys EAF plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.