Abstract
Predicting the capacity of lithium-ion battery (LIB) plays a crucial role in ensuring the safe operation of LIBs and prolonging their lifespan. However, LIBs are easily affected by environmental interference, which may impact the precision of predictions. Furthermore, interpretability in the process of predicting LIB capacity is also important for users to understand the model, identify issues, and make decisions. In this study, an interpretable method considering environmental interference (IM-EI) for predicting LIB capacity is introduced. Spearman correlation coefficients, interpretability principles, belief rule base (BRB), and interpretability constraints are used to improve the prediction precision and interpretability of IM-EI. Dynamic attribute reliability is introduced to minimize the effect of environmental interference. The experimental results show that IM-EI model has good interpretability and high precision compared to the other models. Under interference conditions, the model still has good precision and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.