Abstract

In this paper, an interior point algorithm based on trust region techniques is proposed for solving nonlinear optimization problems with linear equality constraints and nonnegative variables. Unlike those existing interior-point trust region methods, this proposed method does not require that a general quadratic subproblem with a trust region bound be solved at each iteration. Instead, a system of linear equations is solved to get a search direction, and then a linesearch of Armijo type is performed in this direction to obtain a new iteration point. From a computational point of view, this approach may in general reduce a computational effort, and thus improve the computational efficiency. Under suitable conditions, it is proven that any accumulation of the sequence generated by the algorithm satisfies the first-order optimality condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call