Abstract

Abstract The present study documents a pronounced interdecadal change in summer rainfall over southern China around 1992/93 and explores the plausible reasons for this change. The summer rainfall is persistently below normal during 1980–92 and above normal during 1993–2002. Coherent changes in atmospheric circulation are identified over East Asia and the South China Sea (SCS)–western North Pacific (WNP). The increase in rainfall is accompanied by an increase in lower-level convergence, midtropospheric ascent, and upper-level divergence over southern China. The changes in lower-level winds feature two anomalous anticyclones: one over the SCS–subtropical WNP, and the other over north China–Mongolia. The outflows from the two anomalous anticyclones converge over southern China, leading to anomalous moisture convergence, enhanced ascent, and increased rainfall. The development of the northern anticyclone is related to an increase in the Tibetan Plateau snow cover in the preceding winter–spring that leads to a contrast in temperature change between the plateau and the surrounding regions. The relatively small temperature change over the plateau, coupled with increases in temperature to the west and the east, leads to an increase in surface pressure extending northward from the plateau. The development of the southern anticyclone is related to an increase in sea surface temperature in the equatorial Indian Ocean that enhances lower-level convergence and ascent. The accompanying upper-level divergent flows from the tropical Indian Ocean to the SCS–WNP lead to the development of anomalous descent and lower-level anomalous anticyclone over the SCS–WNP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call