Abstract

The sea surface temperature (SST) in the South China Sea (SCS) displays prominent intraseasonal variations during boreal winter with a spectrum peak in the 10–30-day time period. These intraseasonal SST variations are closely associated with intraseasonal variations of the East Asian winter monsoon (EAWM). A weak EAWM is preceded by cooler SST and followed by warmer SST in the SCS and subtropical western North Pacific. A coherent southward propagation is seen in the SCS in SST, surface wind, and latent heat flux anomalies. This southward propagation is attributed to the wind-evaporation-SST effect under climatological northerly winds in winter, which differs from summer when climatological winds are westerly. The SST-induced wind speed anomalies are larger to the north side of SST anomalies. This induces larger surface evaporation anomalies to the north side, leading to a southward displacement of large SST anomalies. In turn, wind and evaporation anomalies move southward. There appears to be a positive feedback between circulation and precipitation that leads to amplification of meridional wind anomalies when the SST anomalies are weak. Surface latent heat flux is a dominant factor for the SST change in the SCS and the Yellow Sea. Shortwave radiation has a complementary contribution to the SST change in the SCS, but has a negative effect in the Yellow Sea. The wind-induced Ekman advection appears important for the SST warming in the Yellow Sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call