Abstract

The multicriteria trajectory planning for space manoeuvre vehicle (SMV) is recognized as a challenging problem. Because of the nonlinearity and uncertainty in the dynamic model and even the objectives, it is hard for decision makers to balance all of the preference indices without violating strict path and box constraints. In this paper, to provide the designer an effective method and solve the trajectory hopping problem, an interactive fuzzy physical programming algorithm is introduced. A new multiobjective SMV optimal control problem is formulated and parameterized using an adaptive technique. By using the density function, the oscillations of the trajectory can be captured effectively. In addition, an interactive decision-making strategy is applied to modify the current designer's preferences during optimization process. Two realistic decision-making scenarios are conducted by using the proposed algorithm; Simulation results indicated that without driving objective functions out of the tolerable region, the proposed approach can have better performance in terms of the satisfactory degree compared with other approaches like traditional weighted-sum method, goal programming and fuzzy goal programming. Also, the results can satisfy the current preferences given by the decision makers. Therefore, the method is potentially feasible for solving multicriteria SMV trajectory planning problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.