Abstract
Changes in demand patterns and unexpected events are the two primary sources of delays in healthcare emergency operations. To mitigate such delays, researchers proposed the movement of idle ambulances between emergency bases as one of the effective ways to improve the areal coverage of future demands. In this study, we have developed a model-driven decision support system that simultaneously seeks to maximize demand coverage while minimizing travel time by optimally relocating emergency response vehicles. The developed mathematical model partitions and prioritizes demand into four categories and continuously updates them over time. Furthermore, it dynamically calculates the number of coverages in different regions based on the current location of idle ambulances. Also, we developed a real-time risk assessment DSS for recommended relocations, which could be utilized as a reference by the EMS user while implementing suggested relocation decisions. A real case study is used to validate the proposed DSS, and its final output is compared to the existing operational policy. The findings show that the average workload added to each ambulance due to relocations has significantly improved the response time and coverage ratio. Compared to the existing operational policy, the developed decision support system decreased the time to respond to calls, which was deemed to be more than to offsets the increase in travel time due to relocation. Furthermore, the system also reduced the total working time of all ambulances by about 9% per shift.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have