Abstract
This paper illustrates some of the capabilities of previously proposed network control system (NCS) architectures to carry on functioning in the event of faults, without recourse to system reconfiguration. The principle of interaction prediction is used to set up a coordination strategy that encapsulates an ability to withstand or tolerate certain faults, thereby allowing the system to continue functioning. It is also shown that the coordination strategy can be made more effective if a learning agent is allowed to learn the coordination functions. This facilitates the use of different types of agent at the local level, together with recurrent networks and genetic algorithms (GAs) at the coordination level. The experimental test-bed system is a benchmark three-tank system that has some of the main features of an industrial process control system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.