Abstract

This work derives an interaction integral for the computation of mixed-mode stress intensity factors (SIFs) in three-dimensional (3D) nonhomogeneous materials with continuous or discontinuous properties. The present method is based on a two-state integral by the superposition of actual and auxiliary fields. In 3D domain formulation of the interaction integral derived here, the integrand does not involve any derivatives of material properties. Furthermore, the formulation can be proved to be still valid even when the integral domain contains material interfaces. Therefore, it is not necessary to limit the material properties to be continuous for the present formulation. On account of these advantages, the application range of the interaction integral can be greatly enlarged. This method in conjunction with the finite element method (FEM) is employed to solve several representative fracture problems. According to the comparison between the results and those from the published lectures, good agreement demonstrates the validation of the interaction integral. The results show that the present interaction integral is domain-independent for nonhomogeneous materials with interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.