Abstract

A new interaction integral technique is derived for computation of mixed-mode stress intensity factors (SIFs) in nonhomogeneous materials with continuous or discontinuous properties. This method is based on a conservation integral that relies on two admissible mechanical states (actual and auxiliary fields). In the equivalent domain formulation, the integrand does not involve any derivatives of material properties. Moreover, the formulation is proved to be still valid when the integral domain contains material interfaces. Therefore, its applicable range is greatly enlarged. The method is combined with the extended finite element method (XFEM) to calculate the SIFs for different integral domains. Numerical results show that the interaction integral has excellent convergence for material nonhomogeneity and discontinuity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.