Abstract

The modeling of sound propagation for land-based wind turbines is a complex task that takes various parameters into account. Not only do the wind speed and wind direction affect the noise received at a certain position by changing the refraction of the sound, but also the terrain complexity, ground impedance, and receiver position relative to the source and ground all affect propagation. These effects are seen by the reflections of the sound at the ground surface causing interference of sound waves, or by the receiver being positioned in and out of noise shadow zones in the upwind far field position, or in steep terrain irregularities. Several sound propagation models with different levels of fidelity have been developed through time to account for these effects. This paper will focus on two different parabolic equation models, the Beilis-Tappert Parabolic Equation and the Generalized Terrain Parabolic Equation, through theoretical studies of varying terrain complexity, ground impedance, and sound speed profiles (upwind, downwind, and no wind). In addition, the propagation models are validated through spectral comparisons to noise measurements from two different campaigns considering loudspeaker noise and wind turbine noise, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.