Abstract
AbstractThis paper presents an intelligent system for gastrointestinal polyp detection in endoscopic video. Video endoscopy is a popular diagnostic modality in assessing the gastrointestinal polyps. But the accuracy of diagnosis mostly depends on doctors' experience that is crucial to detect polyps in many cases. Computer‐aided polyp detection is promising to reduce the miss detection rate of polyp and thus improve the accuracy of diagnosis results. The proposed method illustrates an automatic system based on a new color feature extraction scheme as a support for gastrointestinal polyp detection. The scheme is the combination of color empirical mode decomposition features and convolutional neural network features extracted from video frames. The features are fed into a linear support vector machine to train the classifier. Experiments on standard public databases show that the proposed scheme outperforms the previous conventional methods, gaining accuracy of 99.53%, sensitivity of 99.91%, and specificity of 99.15%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Imaging Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.