Abstract
Gastrointestinal cancer is one of the leading causes of death across the world. The gastrointestinal polyps are considered as the precursors of developing this malignant cancer. In order to condense the probability of cancer, early detection and removal of colorectal polyps can be cogitated. The most used diagnostic modality for colorectal polyps is video endoscopy. But the accuracy of diagnosis mostly depends on doctors' experience that is crucial to detect polyps in many cases. Computer-aided polyp detection is promising to reduce the miss detection rate of the polyp and thus improve the accuracy of diagnosis results. The proposed method first detects polyp and non-polyp then illustrates an automatic polyp classification technique from endoscopic video through color wavelet with higher-order statistical texture feature and Convolutional Neural Network (CNN). Gray Level Run Length Matrix (GLRLM) is used for higher-order statistical texture features of different directions (Ɵ = 0o, 45o, 90o, 135o). The features are fed into a linear support vector machine (SVM) to train the classifier. The experimental result demonstrates that the proposed approach is auspicious and operative with residual network architecture, which triumphs the best performance of accuracy, sensitivity, and specificity of 98.83%, 97.87%, and 99.13% respectively for classification of colorectal polyps on standard public endoscopic video databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.