Abstract

This paper presents an optimization algorithm for engineering design problems having a mix of continuous, discrete and integer variables; a mix of linear, non-linear, differentiable, non-differential, equality, inequality and even discontinuous design constraints; and conflicting multiple design objectives. The intelligent movement of objects (vertices and compounds) is simulated in the algorithm based on a Nelder–Mead simplex with added features to handle variable types, bound and design constraints, local optima, search initiation from an infeasible region and numerical instability, which are the common requirements for large-scale, complex optimization problems in various engineering and business disciplines. The algorithm is called an INTElligent Moving Object algorithm and tested for a wide range of benchmark problems. Validation results for several examples, which are manageable within the scope of this paper, are presented herein. Satisfactory results have been obtained for all the test problems, hence, highlighting the benefits of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.