Abstract

Hierarchical planning, scheduling and control in flexible manufacturing systems (FMS) provide a systematic way to effectively allocate resources along different time horizons. This paper describes the design and development of an intelligent hierarchical control model based on a proposed tool management method. The control model consists of four levels: the process plan selection, the master scheduling, the job sequencing and the control level. The model is developed to optimize the machine utilization and balance tool magazine capacity of a flexible machining workstation (FMW) in a tool-sharing environment. Problems are identified and modeled in the level of process plan selection, master scheduling, and job sequencing. A genetic-based algorithm was developed to solve the problem domains throughout the hierarchical planning and scheduling model. Fuzzy logic technique could also be incorporated into the master production schedule (MPS) level to allow for a more realistic result in the presence of uncertainty and impreciseness in order to fit the realistic nature of actual industrial environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.