Abstract

Efficient and economical energy utilization is ensured using green energy management systems that currently exist. However, integration of this technology with the Internet of Things (IoT) and edge intelligence is not completely explored. A smart energy management system with a deep learning framework is presented in this paper to address the requirements of energy management in smart industries, homes and grids. An efficient communication is established between the consumers and energy distributors while predicting the future energy consumptions over short time intervals. With least error rate and reduced time complexity, a smart energy management system with optimal normalization model selection and cloud-based data supervising server for energy forecasting in IoT and edge devices is introduced. Communication between the smart grids and the edge devices in the IoT networks connected to a common cloud server regarding efficient energy demand and response features occur in a secure and continuous manner. Short-term energy requirement forecasting is performed with an efficient decision making algorithm while using various preprocessing techniques to manage the electricity data which is of diverse nature. This model is implemented in resource constrained devices and shows promising outcomes. For commercial and residential datasets, the proposed system offers reduced mean-square error (MSE) and root MSE (RMSE) values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.