Abstract
Atrial fibrillation (AF) is a most common arrhythmia with high morbidity and mortality. However, the conventional detection of AF is time-consuming and laborious because it is mainly completed by physician's visual inspection of electrocardiogram (ECG). Thus, it is essential to build the intelligent computer-aided diagnosis system strategy for AF detection. In this work, we present a novel intelligent approach based on the multi-scale convolution kernel (MCK) and Squeeze-and-Excitation network (SENet) for AF detection. The model not only is able to overcome the limitations that exist in the single-scale convolution kernel of traditional convolution neural network (CNN), but also explicitly establish the inter-dependences between the extracted feature channels and screen out the critical ECG features for AF signals recognition, thus improving the model performance. The results demonstrate that the proposed model achieves noticeable performance improvements with the accuracy of 98.3% and 97.5% using a subject-independent validation scheme on the two public databases. Besides, the corresponding ablation experiments show the effectiveness of the proposed MCK strategy. To our knowledge, this is the first time to redesign the convolution kernel in traditional CNN for AF detection, while showing its great potential as an auxiliary tool to help physicians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.