Abstract
AbstractMachine vision‐based weed detection relies on features such as plant colour, leaf texture, shape, and patterns. Drought stress in plants can alter leaf colour and morphological features, which may in turn affect the reliability of machine vision‐based weed detection. The objective of this research was to evaluate the feasibility of using deep convolutional neural networks for the detection of Florida pusley (Richardia scabra L.) growing in drought stressed and unstressed bahiagrass (Paspalum natatum Flugge). The object detection neural networks you only look once (YOLO)v3, faster region‐based convolutional network (Faster R‐CNN), and variable filter net (VFNet) failed to effectively detect Florida pusley growing in drought stressed or unstressed bahiagrass, with F1 scores ≤0.54 in the testing dataset. Nevertheless, the use of the image classification neural networks AlexNet, GoogLeNet, and Visual Geometry Group‐Network (VGGNet) was highly effective and achieved high (≥0.97) F1 scores and recall values (≥0.98) in detecting images containing Florida pusley growing in drought stressed or unstressed bahiagrass. Overall, these results demonstrated the effectiveness of using an image classification convolutional neural network for detecting Florida pusley in drought stressed or unstressed bahiagrass. These findings illustrate the broad applicability of these neural networks for weed detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.