Abstract
Unconfined compressive strength (UCS) of rocks is one of the most important parameters in rock engineering, engineering geology, and mining projects. In the laboratory determination of UCS, high-quality samples are necessary; in which preparing of core samples has several limits, as it is difficult, expensive, and time-consuming. For this, development of predictive models to determine the UCS of rocks seems to be an attractive research. In this study, an intelligent approach based on the Mamdani fuzzy model was utilized to predict UCS of rock surrounding access tunnels in longwall coal mining. To approve the capability of this approach, the obtained results are compared to the results of statistical model. A database containing 93 rock sample records, ranging from weak to very strong rock types, was used to develop and test the models. For the evaluation of models performance, determination coefficient (R 2), root mean square error, and variance account for indices were used. Based on this comparison, it was concluded that performance of fuzzy model is considerably better than statistical model. Also, the fuzzy model results indicate very close agreement for the UCS with the laboratory measurements. Furthermore, the fuzzy model sensitivity analysis shows that Schmidt hardness and porosity are the most and least effective parameters on the UCS, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.