Abstract

Hippocampal theta oscillations (4–12 Hz) are consistently recorded during memory tasks and spatial navigation. Despite several known circuits and structures that generate hippocampal theta locally in vitro, none of them were found to be critical in vivo, and the hippocampal theta rhythm is severely attenuated by disruption of external input from medial septum or entorhinal cortex. We investigated these discrepancies that question the sufficiency and robustness of hippocampal theta generation using a biophysical spiking network model of the CA3 region of the hippocampus that included an interconnected network of pyramidal cells, inhibitory basket cells (BC) and oriens-lacunosum moleculare (OLM) cells. The model was developed by matching biological data characterizing neuronal firing patterns, synaptic dynamics, short-term synaptic plasticity, neuromodulatory inputs, and the three-dimensional organization of the hippocampus. The model generated theta power robustly through five cooperating generators: spiking oscillations of pyramidal cells, recurrent connections between them, slow-firing interneurons and pyramidal cells subnetwork, the fast-spiking interneurons and pyramidal cells subnetwork, and non-rhythmic structured external input from entorhinal cortex to CA3. We used the modeling framework to quantify the relative contributions of each of these generators to theta power, across different cholinergic states. The largest contribution to theta power was that of the divergent input from the entorhinal cortex to CA3, despite being constrained to random Poisson activity. We found that the low cholinergic states engaged the recurrent connections in generating theta activity, whereas high cholinergic states utilized the OLM-pyramidal subnetwork. These findings revealed that theta might be generated differently across cholinergic states, and demonstrated a direct link between specific theta generators and neuromodulatory states.

Highlights

  • Slow oscillations at theta frequencies (4–12 Hz) are consistently recorded in the hippocampus during working memory tasks, spatial navigation, and storage of episodic memory [for review, see 1,2]

  • Basket cells (BCs) received input from entorhinal cortex (EC), dentate gyrus (DG) and CA3 pyramidal cells, while oriens-lacunosum moleculare (OLM) cells were reciprocally connected to pyramidal cells (Fig 2A, see Methods)

  • We discovered that two characteristics of the connections between BC and pyramidal cells prevented an oscillatory coupling: short-term depression [46,47], and the lower connection probability compared to that of OLM-pyramidal connections [63,64]

Read more

Summary

Introduction

Slow oscillations at theta frequencies (4–12 Hz) are consistently recorded in the hippocampus during working memory tasks, spatial navigation, and storage of episodic memory [for review, see 1,2]. A third theta generator implicated by models is the recurrent excitatory connections between pyramidal cells [9,10,20,21,22,23]; experiments again revealed persistent theta oscillations despite disruption of this excitatory glutamatergic transmission in CA1 [24,25]. These observations might indicate a cooperative interaction between the proposed generators of theta, but previous modelling studies have typically focused on a limited set of these generators, and several questions remained unanswered, such as the extent to which each generator contributes to theta power, and whether their relative contributions change in different behavioral or neuromodulatory states

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.