Abstract
A novel integrated two-stage approach is proposed for image segmentation, where the edge, global and local region information of images are in turn incorporated to define the intensity fitting energy. In the first stage, the Chan-Vese model flexibly assimilates the edge indicator function in the beginning, and then the Laplace operator is introduced to regularize the level set function when minimizing the energy functional. As an edge-based and global region-based active contour, it can be inclined to rapidly produce a coarse segmentation result. In the second stage, we further segment the image by absorbing the local region fitting energy, where its initialization is acquired by the final active contour of the first stage. In addition, we present a generalized level set regularization term, which efficiently eliminates the periodically re-initialization procedure of traditional level set methods and maintains the corresponding signed distance property. Compared with the first stage, the local object details are accurately segmented in the second stage, which can acquire an accurate segmentation result. Qualitative and quantitative experimental results demonstrate the accuracy, robustness and efficiency of our approach with applications to some synthetical and real-world images.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have