Abstract

Summary In tight gas reservoirs, gas well production is impaired after Hydraulic fracturing, that is mostly due to fracturing fluid (FF) invasion into matrix and fracture and poor clean-up efficiency. The scope of this study is to investigate the clean-up efficiency in short hydraulic fracture vertical wells and observe how the effect of pertinent parameters on gas production loss (GPL) changes with the hydraulic fracture length. The impact of 12 parameters including fracture permeability, matrix permeability, End point and Exponent of Corey gas and FF relative permeability curve in both matrix and fracture, and Interfacial Tension and Pore Size Index (capillary pressure) have been studied by developing a computer code. Interactive linear surface model describing the dependency of GPL to the pertinent parameters was used. The results indicate that as fracture length decreased the effect of fracture parameters (fracture permeability and End point and Exponent of Corey gas and FF relative permeability curve in fracture) on GPL decreased and the effect of those relevant parameters in matrix on GPL increased. The effect of capillary pressure in reducing GPL is less pronounced in shorter fractures. In shorter fractures, faster fracture clean-up was observed compare to the one for longer fracture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.