Abstract

Hydraulic fracturing is widely used to improve well productivity especially in unconventional reservoirs. This costly operation, however, sometimes underperforms. One of the main reasons for this poor performance is poor clean-up efficiency of injected fracturing fluid (FF). In this work, a parametric study of FF clean-up efficiency of hydraulic fractured vertical wells was performed with 49152 simulations (in 12 sets) consisting of injection, soaking and production periods. Due to the large number of required simulations, that were conducted using a commercial reservoir simulator, a developed computer code was used to automatically read input data, run simulations and creates output data. In each set (consisting of 4096 runs), simultaneous impacts of 12 parameters (fracture permeability, matrix permeability and capillary pressure, end points and exponents of Corey gas and FF relative permeability curve in both matrix and fracture)were studied. To sample the variables domain and analyse results, two-level full factorial experimental design and linear surface model describing dependency of gas production loss (GPL), compared to 100% clean-up, to pertinent parameters at three production periods (10, 30 and 365 days) were considered and supported by the tornado charts of fitted equations, frequency of simulations with given GPL and FF saturation maps. Results indicate that generally parameters controlling FF mobility within fracture had greatest impact on GPL reduction. However in sets with very low matrix permeability especially when applied pressure drop during production is low, the effect of fluid mobility in the matrix on GPL is more pronounced, in other words, it is important how gas and FF flow within matrix rather than how fast fracture is cleaned. In tighter gas formations, generally more GPL and slower clean-up was observed. The effect of matrix capillary pressure on GPL reduction was more pronounced when drawdown was very low and/or soaking time was extended. This observation was more profound in tighter formations, i.e. for these formations, the effect of a change in drawdown and/or soaking time on matrix capillary pressure and GPL was more pronounced. These findings can be used to make better decisions on the performance and optimised design of hydraulic fracturing, which is a costly but widely used stimulation technique for unconventional low permeability gas reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.