Abstract

With high-temperature power devices available, the support circuitry required for efficient operation, such as a gate driver, is needed as part of a complete high-temperature solution. The design of an integrated silicon carbide (SiC) gate driver using a 1.2-μm complementary metal–oxide–semiconductor (CMOS) process is presented. Adjustable drive strength is added to facilitate a minimal external component requirement for high-temperature power modules and lays the groundwork for dynamic adjustment of drive strength. The adjustable drive strength feature demonstrates a capability of reducing overshoot and controlling dv / dt dynamically. Measurement of the gate driver was performed driving a power mosfet gate over temperature, exceeding 500 °C. High-speed and high-voltage room temperature evaluation is provided, demonstrating a system capable of high performance over temperature. The driver accomplishes better than 75 ns of rise and fall time driving the Cree CPM3-0900-0065B from room temperature to over 500 °C indicating that it will be ideal for integration into an all-SiC power module where driver, protection circuits, and power devices are fabricated in SiC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call