Abstract
The prevalence of chronic kidney disease (CKD) is gradually rising worldwide. Patients often remain asymptomatic for an extended period, leaving them unaware of their condition, which can lead to progressing to end-stage renal disease and cause significant economic burden. Improved understanding of CKD pathogenesis can enhance early detection and facilitate advances in drug development. Here, we performed proteomic and phosphoproteomic analyses of the mouse unilateral ureteral obstruction model to explore the molecular mechanisms of chronic kidney injury. 474 significantly differentially expressed proteins and 96 significantly differentially expressed phosphoproteins were screened, respectively. Chronic kidney injury involves complex metabolic pathways such as citrate cycle and hematopoietic system in proteome, and mitochondrial oxidative phosphorylation suppression is a notable alteration. The phosphoproteomic analysis revealed a significant upregulation in epithelial mesenchymal transition and P53 pathways, with a corresponding increase in the phosphorylation of Jun at serine 73. Utilizing HK2 cells, we observed that the reduction oxidative phosphorylation was consistently associated with an augmentation in oxidative stress, which subsequently activated Jun and induced apoptosis. Proteins that act as hubs in these pathways may be candidate targets for CKD intervention. These findings contribute significantly to the current understanding of CKD and provide valuable insights for future studies. SIGNIFICANCE: Chronic kidney disease (CKD) incidence rising annually with varied etiologies, kidney often irreversibly fibrotic, the treatment options are limited and often ineffective due to deficient understanding of renal fibrosis mechanisms. Despite the extensive efforts and numerous omics studies conducted on renal fibrosis, to date, no study has been undertaken to investigate the role of phosphorylated proteins in UUO models. Previously, we performed a comprehensive transcriptome and proteome analysis based on the CKD model, but the potential alterations in the phosphoproteome were not addressed. Here, an integrated proteomic and phosphoproteomic landscape of CKD was completed, which was the the first phosphoproteomic profiles of UUO model. Phosphoproteomic profile suggests that the epithelial mesenchymal transition and P53 pathways is significantly activated in mouse models of kidney injury, and the core protein Jun played a key role in CKD. And a preliminary correlation between P-Jun and oxidative phosphorylation was found base on HK2 cells. Our work contributes to a deeper understanding of the disease characteristics and molecular mechanisms of CKD. Identifying potential CKD targets from proteome and phosphoproteome may provide valuable insights for early diagnosis and treatment of CKD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have