Abstract

Lopinavir, a human immunodeficiency virus protease inhibitor, has a very low oral bioavailability, which can be enhanced with a low dose of the CYPA4 inhibitor ritonavir. Our aim was to separately quantify the role of intestinal and hepatic cytochrome P450 3A (CYP3A4) expression on lopinavir disposition in a novel mouse model. Lopinavir and ritonavir were administered to mice selectively expressing human CYP3A4 in the intestine and/or liver. Using nonlinear mixed-effects modeling, we could separately quantify the effects of intestinal CYP3A4 expression, hepatic CYP3A4 expression, and the presence of ritonavir on both the absorption and elimination of lopinavir, which was previously not possible using noncompartmental methods. Intestinal, but not hepatic, CYP3A4-related first-pass metabolism was the major barrier for systemic entry of lopinavir. Relative oral bioavailability of lopinavir in mice expressing both hepatic and intestinal CYP3A4 was only 1.3% when compared with mice that were CYP3A deficient. In presence of ritonavir, relative bioavailability increased to 9.5% due to inhibiton of intestinal, but not due to inhibition of hepatic first-pass metabolism. Hepatic CYP3A4 related systemic clearance was inversely related to ritonavir exposure and not only hepatic but also intestinal CYP3A4 expression contributed to systemic clearance of lopinavir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.