Abstract

The present paper reports on the analysis of the motion of adhesive particles and deposit formation in a 3D linear compressor cascade in order to investigate the fouling in turbomachinery flows. The unsteady flow field is provided by a prior hybrid large-eddy simulation (LES)/Reynolds-averaged Navier-Stokes (RANS) computation. The particles are individually tracked and the deposit formation is evaluated on the basis of the well-established Thornton and Ning model. Although the study is limited to three regions of the blade, where the most relevant turbulent phenomena occurs, the prediction of fouling shows good agreement with real situations. Deposits form near the casing and the hub, in the zones where there are strong vortical structures originated by the tip leakage and hub vortices. On the blade, the deposit analysis is focused on three main regions: (a) along the stagnation region on the leading edge; (b) on the suction side, where the particles are conveyed by the hub vortex towards blade surfaces; and (c) on the pressure side, where a clean zone forms between leading edge and the blade surface, as can be seen in real compressors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call