Abstract

Due to their flexibility to also build up highly complex geometries, Additive Manufacturing (AM) processes are increasingly applied. Although near net-shape components can be manufactured using, for example, the Selective Laser Melting (SLM) process, the required surface quality can often not be achieved. In order to manufacture contact areas or functional surfaces, subsequent machining processes can be used to achieve the required accuracy in shape and dimension as well as the desired surface quality. In order to reduce the experimental effort during process design and optimization, simulation systems that are able to efficiently model both processes are required. In this paper, an empirical geometry-based model for SLM and milling processes will be presented. Due to the usage of an empirical model, based on the analysis of a set of reference structures, the simulation of macroscopic geometries can be achieved and used in subsequent milling simulations. Furthermore, an experimental validation of the combination of the two simulation models will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.