Abstract
This paper intends to propose an integrated hybrid algorithm for training radial basis function neural network (RBFNN) learning. The proposed integrated of particle swarm and genetic algorithm based optimization (IPGO) algorithm is composed of two approaches based on particle swarm optimization (PSO) and genetic algorithm (GA) for gathering both their virtues to improve the learning performance of RBFNN. The diversity of individuals results in higher chance to search in the direction of global optimal instead of being confined to local optimal particularly in problem with higher complexity. The IPGO algorithm with PSO-based and GA-based approaches has shown promising results in some benchmark problems with three continuous test functions. After proposing the algorithm for these problems with result providing its outperforming performance, this paper supplements a practical application case for the papaya milk sales forecasting to expound the superiority of the IPGO algorithm. In addition, model evaluation results of the case have showed that the IPGO algorithm outperforms other algorithms and auto-regressive moving average (ARMA) models in terms of forecasting accuracy and execution time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have