Abstract

Forest mapping, one of the main components of performing a forest inventory, is an important driving force in the development of laser scanning. Mobile laser scanning (MLS), in which laser scanners are installed on moving platforms, has been studied as a convenient measurement method for forest mapping in the past several years. Positioning and attitude accuracies are important for forest mapping using MLS systems. Inertial Navigation Systems (INSs) and Global Navigation Satellite Systems (GNSSs) are typical and popular positioning and attitude sensors used in MLS systems. In forest environments, because of the loss of signal due to occlusion and severe multipath effects, the positioning accuracy of GNSS is severely degraded, and even that of GNSS/INS decreases considerably. Light Detection and Ranging (LiDAR)-based Simultaneous Localization and Mapping (SLAM) can achieve higher positioning accuracy in environments containing many features and is commonly implemented in GNSS-denied indoor environments. Forests are different from an indoor environment in that the GNSS signal is available to some extent in a forest. Although the positioning accuracy of GNSS/INS is reduced, estimates of heading angle and velocity can maintain high accurate even with fewer satellites. GNSS/INS and the LiDAR-based SLAM technique can be effectively integrated to form a sustainable, highly accurate positioning and mapping solution for use in forests without additional hardware costs. In this study, information such as heading angles and velocities extracted from a GNSS/INS is utilized to improve the positioning accuracy of the SLAM solution, and two information-aided SLAM methods are proposed. First, a heading angle-aided SLAM (H-aided SLAM) method is proposed that supplies the heading angle from GNSS/INS to SLAM. Field test results show that the horizontal positioning accuracy of an entire trajectory of 800 m is 0.13 m and is significantly improved (by 70%) compared to that of a traditional GNSS/INS; second, a more complex information added SLAM solution that utilizes both heading angle and velocity information simultaneously (HV-aided SLAM) is investigated. Experimental results show that the horizontal positioning accuracy can reach a level of six centimetres with the HV-aided SLAM, which is a significant improvement (by 86%). Thus, a more accurate forest map is obtained by the proposed integrated method.

Highlights

  • The accurate spatial distribution and attributes (such as height, diameter at breast height (DBH), species, etc.) of trees are basic and important elements of forest inventories

  • Global Navigation Satellite Systems (GNSSs)/Inertial Navigation Systems (INSs) and Improved Maximum Likelihood Estimation (IMLE)-Simultaneous Localization and Mapping (SLAM) methods for the entire test are presented in Figure 7b and c, As shown in Figure 7a, the IMLE-SLAM solution is effective in the dense forest, where the position respectively

  • Results from the IMLE-SLAM Method Aided by Heading Angle

Read more

Summary

Introduction

The accurate spatial distribution and attributes (such as height, diameter at breast height (DBH), species, etc.) of trees are basic and important elements of forest inventories. With the rapid development of sensors, laser scanning techniques are more and more widely adopted to obtain such information for forest inventory, such as the aerial laser scanning (ALS) [1], terrestrial laser scanning (TLS) and mobile laser scanning (MLS) [2,3]. MLS systems can improve the efficiency of field data collection. There are many recent studies on MLS systems and their accuracy [4,5,6,7]. The quality of the final data (the registered point cloud) based on MLS is related to the accuracy of position and attitude. Position and attitude are provided by a positioning and orientation system (POS), which consists of an Inertial Navigation System (INS) and a Global Navigation Satellite

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.