Abstract
Nonparametric hemodynamic response function (HRF) estimation in functional near-infrared spectroscopy (fNIRS) data plays an important role when investigating the temporal dynamics of a brain region response during activations. Assuming the drift arising from both physical and physiological effects in fNIRS data is Lipschitz continuous; a novel algorithm for joint HRF and drift estimation is derived in this paper. The proposed algorithm estimates the HRF by applying a first-order differencing to the fNIRS time series samples in order to remove the drift effect. An estimate of the drift is then obtained using a wavelet thresholding technique applied to the residuals generated by removing the estimated induced activation response from the fNIRS time-series. It is shown that the proposed HRF estimator is √N consistent whereas the estimator of the drift is asymptotically optimal. The de-drifted fNIRS oxygenated (HbO) and deoxygenated (HbR) hemoglobin responses are then obtained by removing the corresponding estimated drifts from the fNIRS time-series. Its performance is assessed using both simulated and real fNIRS data sets. The application results reveal that the proposed joint HRF and drift estimation method is efficient both computationally and in terms of accuracy. In comparison to traditional model based methods used for HRF estimation, the proposed novel method avoids the selection of a model to remove the drift component. As a result, the proposed method finds an optimal estimate of the fNIRS drift and offers a model-free approach to de-drift the HbO/HbR responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.