Abstract
Non-parametric hemodynamic response function (HRF) estimation in noisy functional Magnetic Resonance Imaging (fMRI) plays an important role when investigating the temporal dynamic of a brain region response during activations. Assuming the drift Lipschitz continuous; a new algorithm for non-parametric HRF estimation is derived in this paper. The proposed algorithm estimates the HRF by applying a first order differencing to the fMRI time series samples. It is shown that the proposed HRF estimator is √(N) consistent. Its performance is assessed using both simulated and a real fMRI data sets obtained from an event-related fMRI experiment. The application results reveal that the proposed HRF estimation method is efficient both computationally and in term of accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.