Abstract

The availability of hourly air relative humidity (HARH) data is a key requirement for the estimation of epidemic dynamics of plant fungal pathogens, in particular for the simulation of both the germination of the spores and the infection process. Most of the existing epidemic forecasting models require these data as input directly or indirectly, in the latter case for the estimation of leaf wetness duration. In many cases, HARH must be generated because it is not available in historical series and when there is the need to simulate epidemics either on a wide scale or with different climate scenarios. Thirteen modelling solutions (MS) for the generation of this variable were evaluated, with different input requirements and alternative approaches, on a large dataset including several sites and years. A composite indicator was developed using fuzzy logic to compare and to evaluate the performances of the models. The indicator consists of four modules: Accuracy, Correlation, Pattern and Robustness. Results showed that when available, daily maximum and minimum air relative humidity data substantially improved the estimation of HARH. When such data are not available, the choice of the MS is crucial, given the difference in predicting skills obtained during the analysis, which allowed a clear detection of the best performing MS. This study represents the first step of the creation of a robust modelling chain coupling the MS for the generation of HARH and disease forecasting models, including the systematic validation of each step of the simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.