Abstract

Simultaneous and automatic segmentation of the blood pool and myocardium is an important precondition for early diagnosis and pre-operative planning in patients with complex congenital heart disease. However, due to the high diversity of cardiovascular structures and changes in mechanical properties caused by cardiac defects, the segmentation task still faces great challenges. To overcome these challenges, in this study we propose an integrated multi-task deep learning framework based on the dilated residual and hybrid pyramid pooling network (DRHPPN) for joint segmentation of the blood pool and myocardium. The framework consists of three closely connected progressive sub-networks. An inception module is used to realize the initial multi-level feature representation of cardiovascular images. A dilated residual network (DRN), as the main body of feature extraction and pixel classification, preliminary predicts segmentation regions. A hybrid pyramid pooling network (HPPN) is designed for facilitating the aggregation of local information to global information, which complements DRN. Extensive experiments on three-dimensional cardiovascular magnetic resonance (CMR) images (the available dataset of the MICCAI 2016 HVSMR challenge) demonstrate that our approach can accurately segment the blood pool and myocardium and achieve competitive performance compared with state-of-the-art segmentation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.