Abstract

In this study, we harnessed three cutting-edge algorithms' capabilities to refine the elbow fracture prediction process through X-ray image analysis. Employing the YOLOv8 (You only look once) algorithm, we first identified Regions of Interest (ROI) within the X-ray images, significantly augmenting fracture prediction accuracy. Subsequently, we integrated and compared the ResNet, the SeResNet (Squeeze-and-Excitation Residual Network) ViT (Vision Transformer) algorithms to refine our predictive capabilities. Furthermore, to ensure optimal precision, we implemented a series of meticulous refinements. This included recalibrating ROI regions to enable finer-grained identification of diagnostically significant areas within the X-ray images. Additionally, advanced image enhancement techniques were applied to optimize the X-ray images' visual quality and structural clarity. These methodological enhancements synergistically contributed to a substantial improvement in the overall accuracy of our fracture predictions. The dataset utilized for training, testing & validation, and comprehensive evaluation exclusively comprised elbow X-ray images, where predicting the fracture with three algorithms: Resnet50; accuracy 0.97, precision 1, recall 0.95, SeResnet50; accuracy 0.97, precision 1, recall 0.95 & ViTB- 16 with high accuracy of 0.99, precision same as the other two algorithms, with a recall of 0.95. This approach has the potential to increase the precision of diagnoses, lessen the burden of radiologists, easily integrate into current medical imaging systems, and assist clinical decision-making, all of which could lead to better patient care and health outcomes overall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.