Abstract

Bone cancer originates from bone and rapidly spreads to the rest of the body affecting the patient. A quick and preliminary diagnosis of bone cancer begins with the analysis of bone X-ray or MRI image. Compared to MRI, an X-ray image provides a low-cost diagnostic tool for diagnosis and visualization of bone cancer. In this paper, a novel technique for the assessment of cancer stage and grade in long bones based on X-ray image analysis has been proposed. Cancer-affected bone images usually appear with a variation in bone texture in the affected region. A fusion of different methodologies is used for the purpose of our analysis. In the proposed approach, we extract certain features from bone X-ray images and use support vector machine (SVM) to discriminate healthy and cancerous bones. A technique based on digital geometry is deployed for localizing cancer-affected regions. Characterization of the present stage and grade of the disease and identification of the underlying bone-destruction pattern are performed using a decision tree classifier. Furthermore, the method leads to the development of a computer-aided diagnostic tool that can readily be used by paramedics and doctors. Experimental results on a number of test cases reveal satisfactory diagnostic inferences when compared with ground truth known from clinical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.