Abstract
With the aim of promoting environmental sustainability and enhancing transport efficiency, battery-powered connected and automated vehicles (B-CAVs) are employed to replace diesel-powered ones in horizontal transport systems (HTSs) of container terminals. The operational efficiency of an HTS can be increased by the cooperation of B-CAVs. However, it is time-consuming to charge them. Therefore, their battery management becomes a critical issue of a transport schedule. To run container terminals more economically and efficiently, this work proposes an integrated scheduling approach to B-CAVs tasks’ dispatch and route planning, where battery management is taken into account. An integer programming model is constructed with the goal of minimizing the total travel distance. Then, a sustainable charging policy is designed to ensure the consistent transport capacity of an HTS. Furthermore, a congestion-free path plan-based improved genetic algorithm is presented to obtain a near-optimal plan for dispatching B-CAVs to perform transporting and charging operations. A series of experiments are carried out to verify the effectiveness and efficiency of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.