Abstract
Power sharing performance is a critical issue of hybrid energy storage system (HESS) in autonomous DC microgrid (MG). In this paper, a novel integral droop (ID) is proposed to mimic dynamic characteristics of the capacitor by using energy storages (ESs) with quick response. The main advantage of the proposed controller is that dynamic power sharing among ESs is automatically realized in the decentralized level. For a given HESS, ESs with the proposed ID enables to compensate fast power change while ESs with conventional voltage-power (V-P) droop provide low frequency components of power demand. With coordinated control between ID and V-P droop, high/low pass filters (LPF/HPF) are intrinsically formulated in HESS in order to obtain reasonable dynamic power allocations among ESs. Matlab/Simulink model of HESS is established for the verification of ID controller, in which the impacts of different ID coefficients on transient performances of the system are analyzed in detail. Finally, the effectiveness of proposed ID is experimentally validated on a HIL (hardware in loop) HESS platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.