Abstract

We present a collection of methods for solving the incompressible Navier--Stokes equations in the plane that are based on a pure stream function formulation. The advantages of this approach are twofold: first, the velocity is automatically divergence free, and second, complicated (nonlocal) boundary conditions for the vorticity are avoided. The disadvantage is that the solution of a nonlinear fourth-order partial differential equation is required. By recasting this partial differential equation as an integral equation, we avoid the ill-conditioning which hampers finite difference and finite element methods in this environment. By using fast algorithms for the evaluation of volume integrals, we are able to solve the equations using O(M) or O(M log M) operations, where M is the number of points in the discretization of the domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.