Abstract
A generalization of the Kaup–Newell spectral problem associated with sl is introduced and the corresponding generalized Kaup–Newell hierarchy of soliton equations is generated. Bi-Hamiltonian structures of the resulting soliton hierarchy, leading to a common recursion operator, are furnished by using the trace identity, and thus, the Liouville integrability is shown for all systems in the new generalized soliton hierarchy. The involved bi-Hamiltonian property is explored by using the computer algebra system Maple.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.