Abstract

We present a novel integer programming formulation for basic block instruction scheduling on single-issue processors. The problem can be considered as a very general sequential task scheduling problem with delayed precedence constraints. Our model is based on the linear ordering problem and has, in contrast to the last IP model proposed, numbers of variables and constraints that are strongly polynomial in the instance size. Combined with improved preprocessing techniques and given a time limit of ten minutes of CPU and system time, our branch-and-cut implementation is capable to solve all but eleven of the 369,861 basic blocks of the SPEC 2000 integer and floating point benchmarks to proven optimality. This is competitive to the current state-of-the art constraint programming approach that has also been evaluated on this test suite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call