Abstract

A recurring challenge of a DC SF 6 /N 2 -filled GIS/GIL apparatus is the charge accumulation at DC stress. The conventional design rules and knowledge of AC spacers may not be applicable for this new type of apparatus. A novel design rule is proposed considering the effect of accumulated charge on the threshold of electric field strength resistant to the superposed voltage. A surface charge accumulation simulation model is introduced, and the key parameters in the simulation model are measured. In addition, an experimental platform for a 100 kV spacer flashover test is established. Spacer flashover tests under superimposed voltage with opposing polarities are carried out, and the withstanding voltage of the spacer is obtained. Finally, based on the proposed model, the threshold of the surface electric field strength (tangential component) on the DC spacer in SF 6 /N 2 mixed gases is discussed. For the reliable insulation design of a DC GIS/GIL apparatus filled with 0.7 MPa SF 6 /N 2 , the threshold of surface electric field strength on the DC spacer is 12 kV/mm. The insulation design rule can be referenced in the design of a high-voltage DC SF 6 /N 2 -filled GIS/GIL apparatus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.