Abstract

A photomultiplier tube (PMT) gain can change with many environmental factors, such as room temperature, patient load, short-term or long-term radiation exposure, and time. Unbalanced PMT gains degrade the image resolution and quality in a positron emission tomography (PET) camera or a gamma camera. This paper presented a new method to instantaneously recover the original manufacture PMT gain setting using a blue light-emitting diode (LED) network. Each LED shines directly into the center of a scintillation crystal block from the PMT side, and the light is collected by the surrounding PMTs. The gain tuning is done by changing the gains of these surrounding PMTs or their following amplifiers to have the same signal output. An LED has well-known problems of large light-yield varieties and is very sensitive to temperature. To overcome these problems, the light outputs of two neighboring LEDs are aligned first by a shared PMT. Each LED flashes at 250-KHz pulse rate, the data acquisition for the gain tuning can be finished within a very short time so the LED temperature effect can be ignored. The amount of LED light output is set as close as possible to the amount of scintillation light by programming the width or height of the pulses; therefore, the same electronics can be used for data acquisition and tuning. We estimated a 12 module PET camera with 924 PMTs in a PMT-quadrant-sharing design can be tuned in 1 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.