Abstract
Metal foam is a multifunctional material with a lower specific weight, high stiffness and compressive strength, and high energy absorption. These remarkable properties make metal foams a promising candidate for conventional materials in different industrial fields. Despite numerous researches on mechanical behavior either static or dynamic of structures made of metal foams, torsional vibration analysis of metal foam structures is still uninvestigated. In this investigation, the influence of various imperfection distribution patterns on the torsional dynamic response of metal foam beams is examined within the framework of Timoshenko-Gere's theory. Two common materials i.e. SUS304 and Aluminum foams are considered the constructive materials of structure. Moreover, three imperfection distribution patterns are taken into account. The virtual work's principle has been employed to derive the torsional governing equation of metal foam beams. Then, the derived governing equation has been solved via an analytical method. The accuracy of the employed methodology has been compared with the findings of former research in the literature. Finally, the influences of different notable parameters on the variation of natural torsional frequency have been examined and demonstrated in a group of tables and diagrams.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have